翻訳と辞書
Words near each other
・ Hodgesiella christophi
・ Hodgesiella lampropeda
・ Hodgesiella puplesisi
・ Hodgesiella quagella
・ Hodgesiella rebeli
・ Hodgesiella rhodorrhisella
・ Hodgeston
・ Hodgeston Parish Church
・ Hodgesville, West Virginia
・ Hodges–Lehmann estimator
・ Hodgetts
・ Hodgetts + Fung
・ Hodgeville School
・ Hodgeville, Saskatchewan
・ Hodge–Arakelov theory
Hodge–de Rham spectral sequence
・ Hodge–Tate module
・ Hodgin Hall
・ Hodgins
・ Hodgkin
・ Hodgkin cycle
・ Hodgkin's lymphoma
・ Hodgkins
・ Hodgkins (crater)
・ Hodgkins School
・ Hodgkins Seamount
・ Hodgkins, Illinois
・ Hodgkinsine
・ Hodgkinson
・ Hodgkinsonia frutescens


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hodge–de Rham spectral sequence : ウィキペディア英語版
Hodge–de Rham spectral sequence
In mathematics, the Hodge–de Rham spectral sequence, also known as the Frölicher spectral sequence computes the cohomology of a complex manifold.
==Description of the spectral sequence==
The spectral sequence is as follows:
:H^p(X, \Omega^q) \Rightarrow H^(X, \mathbf C)
where ''X'' is a complex manifold, H^(X, \mathbf C) is its cohomology with complex coefficients and the left hand term, which is the E_2-page of the spectral sequence, is the cohomology with values in the sheaf of holomorphic differential forms.
The existence of the spectral sequence as stated above follows from the Poincaré lemma, which gives a quasi-isomorphism of complexes of sheaves
:\mathbf C \rightarrow \Omega^
* := (\stackrel d \to \Omega^1 \stackrel d \to \cdots \to \Omega^ ),
together with the usual spectral sequence resulting from a filtered object, in this case the ''Hodge filtration''
: F^p \Omega^
* := (\to 0 \to \Omega^p \to \Omega^ \to \cdots )
of \Omega^
*.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hodge–de Rham spectral sequence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.